ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

по диссертации Тарковского Викентия Викентьевича «Генерационные характеристики активных сред на красителях в растворах и твердотельных матрицах при микро- и наносекундном возбуждении», представленной к присуждению ученой степени доктора физико-математических наук по специальности 01.04.21 — Лазерная физика

Соответствие диссертации специальностям и отрасли науки, по которым она представлена к защите (со ссылкой на область исследования паспорта соответствующей специальности, утвержденного ВАК)

Положения И выводы представленной диссертации соответствуют паспорту специальности 01.04.21 - лазерная физика по физикоматематическим поскольку наукам, В ней представлены экспериментальных исследований активных сред на основе сложных органических соединений и параметров импульсных лазеров на их основе микросекундного и наносекундного диапазона, длительностей генерируемого излучения, а также результаты теоретического моделирования лазерных систем, которые носят фундаментальный характер в диссертации предложено применение лазерных красителей и созданных на их основе лазерных систем для решения прикладных задач. Результаты диссертационной работы соответствуют отрасли наук «физикоматематические науки». Задачи, содержание, полученные результаты соответствуют также пунктам специальности 01.04.21 - лазерная физика:

Физика активных сред (атомных и молекулярных газов, кристаллов и стекол, полупроводников, жидких и полимерных материалов и др.), используемых для усиления и генерации оптического излучения.

Технологии, основанные на резонансном взаимодействии лазерного излучения с веществом. Лазерная спектроскопия. Лазерное разделение изотопов.

Процессы взаимодействия лазерного излучения с биологическими объектами. Физические основы применения лазеров в медицине и биологии. Механизмы низкоинтенсивной лазерной терапии. Фотодинамическая и фотоактивируемая антибактериальная терапия.

Актуальность темы диссертации

В настоящее время лазеры на красителях нашли достаточно широкое применение в различных областях науки и техники, что связано с присущими им достоинствами: простота, невысокая стоимость, широкий выбор спектров генерации. Тем не менее актуальным остаётся создание универсальных лазерных систем, способных более эффективно решать круг конкретных задач.

Спектральные, энергетические и временные характеристики излучения лазеров на красителях определяются, прежде всего, активной средой. В настоящее время известно более 600 различных красителей, которые позволяют перекрывать спектр генерация от 310 до 1800 нм.

Несмотря на множество известных классов и типов лазерных красителей, количество активных сред, характеризующийся высокой эффективностью генерации и большим ресурсом работы в различных спектральных диапазонах, не так и велико. Это обуславливает необходимость поиска новых активных сред, которые эффективно генерируют как в растворах, так и в твердотельных матрицах различных типов.

В частности большой интерес представляет использование в качестве активных сред в лазерах на красителях производных кумарина, которые, не смотря на распространённость, не исчерпали своего потенциала.

Недостаточно исследованным оказался подход к повышению ключевых параметров (эффективности и ресурса генерации) лазеров на красителях путём оптимизации длительности импульсов накачки (особенно в микросекундном диапазоне).

Поэтому актуальность диссертационной работы не вызывает сомнения.

Степень новизны результатов, полученных в диссертации, и научных положений, выносимых на защиту

Содержание диссертации и основные положения, выносимые на защиту, включают новые результаты, которые теоретически обоснованы и подтверждены экспериментально. А именно:

Предложены новые эффективные красители в качестве генерирующих соединений с высокими энергетическими параметрами и фотостабильностью на основе бифлуорофорных молекул кумарина.

Установлена роль отдельных структурных групп молекул красителей в формировании их спектральных и генерационных параметров.

Впервые при когерентной накачке излучением эксимерного *XeCl* — лазера (308нм) получена генерация на 12-ти новых соединениях — производных 3-(2-бензимидазолил) кумарина со спектром генерации в диапазоне 490–573 нм и обладающих высокими генерационной эффективностью и фотохимической стойкостью.

Впервые получена генерация в спектральной области 730—740 нм на красителях кумаринового класса — производных бензопирилия. Для этих соединений определен механизм влияния растворителей и заместителей в 7-м положении кумаринового кольца на их генерационную способность.

Установлена и объяснена аномальная зависимость эффективности генерации от спектрального состава излучения накачки при микросекундном когерентном

возбуждении основных наиболее эффективных классов красителей (кумариновых, родаминовых, оксазиновых красителей, DCM, феналемина 160) в растворах и твердотельных матрицах.

При когерентной микросекундной накачке получена генерация у 5 типов красителей (перилены, феналемины, перилен), внедренных в нанопористое стекло. Оценены энергетические и спектральные характеристики генерации таких систем.

Все положения, выносимые на защиту, являются новыми и вносят существенный вклад в физику активных сред на основе сложных органических соединений и позволяют создавать лазерные источники на их основе.

Обоснованность и достоверность выводов и рекомендаций, сформулированных в диссертации

Достоверность полученных результатов достигнута корректным применением развитых теоретических методов и математического аппарата для решения поставленных задач, всесторонней обоснованностью математических моделей расчёта ИХ физической интерпритацией, количественным и качественным соответствием результатов расчётов полученными экспериментальными Результаты данными. проведенного исследования достоверны, экспериментально апробированы, выводы диссертации обоснованы путем тщательного рассмотрения и анализа результатов исследований, что подтверждается апробацией и публикациями автора научных работ по теме диссертации.

Научная, практическая, экономическая и социальная значимость результатов диссертации с указанием рекомендаций по их использованию

Научная значимость диссертационного исследования состоит в том что впервые на широком классе красителей всесторонне изучены особенности их генерации при накачке импульсами с длительностью единицы микросекунд и экспериментально доказана возможность достижения КПД генерации на уровне применения наносекундной накачки. Установлено, что в общем энергетическим балансе потери, обусловленные наведенным поглощением молекул в канале триплетных уровней и продуктами необратимого фотохимического распада молекул, играют второстепенную роль по сравнению с наведёнными потерями в канале возбужденных синглетных уровней.

Установлена и интерпретирована аномальная зависимость эффективности генерации от спектрального состава излучения накачки при микросекундном когерентном возбуждении наиболее распространённых эффективных классов красителей (кумариновых, родаминовых, оксазиновых красителей, DCM, феналемина 160) в растворах и твердотельных матрицах, выражающаяся в том, что КПД генерации по мере изменения длины волны возбуждающего излучения

вначале возрастает, затем вблизи максимума полосы поглощения падает с последующим ростом на длинноволновом крыле полосы накачки. Спектры генерации при этом обнаруживают коротковолновое смещение, причем, их длинноволновая граница меняется несущественно. При увеличении длины волны накачки происходит расширение генерируемой полосы в область коротких длин волн на 10–12 нм, а при наличии «провала» наблюдается двухполосная генерация.

Предложены новые кумариновые красители — производные 3-(2-бензимидазолил) кумарина, генерирующие в спектральном диапазоне 490–573 нм при возбуждении излучением эксимерного *XeCl*-лазера и имеющие высокую генерационную эффективность, достигающую 20 %, а при ламповой накачке более 1 %, и обладающие в условиях мощной немонохроматической накачки высокой фотохимической устойчивостью, которая в 3–5 раз выше, чем у родамина 6Ж.

Продемонстрированы, что производные 3-имидазопиридил кумарина при трех видах накачки — ламповой, когерентных наносекундной и микросекудной — позволяют получать генерацию с высокой эффективностью в спектральном диапазоне 500—580 нм.

Применение водноэтанольных растворов позволяет увеличить эффективность генерации, фотостабильность и ресурс работы лазерных красителей за счет образования мицеллярных комплексов при оптимальной концентрации молекул воды, которая окружает и стабилизирует молекулы красителя и тем самым предохраняет их от разрушения мощным УФ-излучением.

Установлена возможность увеличения фотостабильности комплексов красителей различных классов с β-циклодекстрином с помощью добавки наночастиц серебра в этанольных и водно-этанольных растворах ввиду того, что молекулы β-CD создают защитную оболочку для молекул красителя и тем самым эффективно экранируют их от фотораспада.

На основании исследования спектрально-люминесцентных характеристик красителей различных классов, внедренных в твердотельные матрицы (НПС-П, полиуретан, гибридные нанокомпозиты) сделан вывод о возможности создания твердотельной активной среды на основе нового класса красителей, обладающих рядом эксплуатационных преимуществ по сравнению с жидкостными активными средами.

Путём направленного синтеза новых бифлуорофорных молекул с объемным гетероциклическим радикалом (триазольным-, оксадиазольным- или тиазольным) в положении 3-го кумаринового ядра, который выступает в виде связующего звена с арильным фрагментом молекулы, доказана возможность получения новых генерирующих соединений с высокими энергетическими и фотостабильными параметрами.

Практическая и социальная значимость.

Экспериментально доказано, возможность повышения эффективности и ресурса генерации красителей, генерируемых в спектральной области 660-860 нм (ЛК-678, ЛК-703, ЛК-747, ЛК-790, ЛК-800, ЛК-840), путем использования трансформатора излучения импульсной коаксиальной лампы этанольного раствора вышеуказанного красителя. Используемый ПИТ трансформатора излучения эффективно поглощает излучение в спектральной области 200 – 540 нм и переизлучает в спектральную область 530 – 650 нм. В лазере лампой-кюветой применение указанного трансформатора с коаксиальной излучения накачки для красителей, эффективно генерирующих в ИК-области спектра, позволило повысить КПД генерации в 1,4-2 раза, а ресурс работы – в 3-4 раза.

Новые кумариновые соединения (3-карбамидоюлолидин-2-иминокумарин, 2-(7-диэтиламинокумарин-3-ил) бензимидазолий перхлорат, 2-(юлолидинкумарин-3-ил) бензимидазолий перхлорат) предложено использовать в качестве источника возбуждения генерации в титан-сапфировом лазере при микросекундной когерентной накачке.

Обосновано, что новая активная среда на основе 3-бензимидазолила-7-юлолидина-2-иминокумарина перхлората перспективна для применения в селективной лазерной медицине. Кроме очевидных преимуществ её использования в лазерных системах для лечения сосудистых заболеваний, а также в дерматологии для лечения псориаза, она может с успехом применяться также и в лазерных абляционных литотрипторах.

Красители 7-диэтиламино-3-имидазопиридил кумарин гидрохлорид, 7диэтиламно-3-бензимидазолил кумарин гидрохлорид, 7-диэтиламино-3бензимидазолил кумарин перхлорат, 7-диэтиламино-3-бензимидазолил кумарин 3-бензимидазолил-7-юлолидин-2-иминокумарин перхлорат, 3-(2бензимидазо [4,5 в]-пиридил)-7-юлолидин кумарин гидрохлорид, 2-(7диэтиламинокумарин-3-ил) бензимидазолий перхлорат, 2-(юлолидинкумарин-3бензимидазолий хлорид, 2-(юлолидинкумарин-3-ил) бензимидазолий перхлорат предложено использовать для окрашивания полимеров, технология внедрена в изделиях, изготавливаемых для непищевых целей на ООО «ОВ-ПластСнаб»-ЗОВПЛАСТ (г. Гродно).

Активная среда лазера на красителях на основе 3-бензимидазолила-7-юлолидина-2-иминокумарина перхлората внедрены в учебный процесс кафедры медицинской и биологической физики для студентов всех специальностей ГрГУ им. Янки Купалы.

Результаты работы также внедрены в научный и учебный процессы физикотехнического факультета ГрГУ им. Янки Купалы и могут использоваться в учебных курсах, посвященных сенсорике и флуоресцентной спектроскопии.

Опубликованность результатов диссертации в научной печати

Основные результаты диссертации опубликованы в 78 публикациях, из них: 33 статьи — в научных изданиях, соответствующих п. 19 Положения о присуждении ученых степеней и присвоении ученых званий в Республике Беларусь (8,2 авт. л.), 11 статей — в иных научных изданиях (2,2 авт. л.), 22 материала (3,2 авт. л.) и 11 тезисов докладов (0,8 авт. л.) научных конференций, 1 заявка на выдачу патента на изобретение. Общий объем опубликованных по теме диссертации материалов составляет 14,4 авт. л.

Соответствие оформления диссертации требованиям ВАК

Тексты диссертации и автореферата оформлены в соответствии с требованиями ВАК и «Инструкции о порядке оформления квалификационной научной работы (диссертации) на соискание ученых степеней кандидата и доктора наук, автореферата и публикаций по теме диссертации». В диссертационной работе соблюдено требование о правилах использования научных материалов других авторов. Ссылки на материалы, которые используются в диссертации, оформлены в соответствии с требованиями, изложенными в указанной инструкции.

Замечания по диссертации (при наличии) (если они не указываются в структурных элементах отзыва о диссертации):

- 1. В работе впервые приведены обширные исследования особенностей генерации широкого класса красителей при когерентной накачке длительностью в единицы микросекунд. Для практического использования ее результатов, было бы полезно провести сравнительный анализ особенностей генерации в зависимости длительности накачки (непрерывной, ламповой, микро- и наносекундной).
- 2. Приведенные в диссертации эмпирические зависимости влияния объемных заместителей в структуре молекул кумаринов на их спектрально-генерационные свойства следовало бы подтвердить квантово-химическими расчётами распределения электронной плотности молекулярных орбиталей и установлению цепи сопряжения в основном и возбужденном состояниях. Это позволило бы глубже раскрыть механизм переноса энергии и фотораспада данных соединений при их возбуждении.
- 3. При доказательстве механизма "аномальной спектральной эффективности генерации красителей" существенно помогли бы экспериментально измеренные спектры синглет-синглетного поглощения, а также более тщательное рассмотрение влияния возможных нелинейных эффектов.

- При раскрытии механизма образования "комплексов включения" красителей с β-циклодекстрином важной аргументацией явились бы дополнительные сведения по молекулярному рассеянию и поляризации флуоресценции.
- 5. Диссертация, как объемной труд, не лишена отдельных огрехов в оформлении, правописании, стилистике.

Указанные замечания не затрагивают основные научные положения диссертационной работы и не мешают положительно оценить ее.

Соответствие научной квалификации соискателя ученой степени, на которую он претендует

Все выше изложенное позволяет оценить научную квалификацию Тарковского В.В. как соответствующую ученой степени доктора физикоматематических наук.

Выводы

Диссертация Тарковского В.В. «Генерационные характеристики активных сред на красителях в растворах и твердотельных матрицах при микро- и наносекундном возбуждении», представленная на соискание ученой степени доктора физико-математических наук, является законченной квалификационной научной работой. Она соответствует требованиям Высшей аттестационной комиссии Республики Беларусь, предъявляемым к диссертационным работам на соискание ученой степени доктора физико-математических наук по специальности 01.04.21 — лазерная физика. Рекомендуется присудить В.В. Тарковскому ученую степень доктора физико-математических наук по специальности 01.04.21 — лазерная физика за:

- установление и объяснение аномальной зависимости эффективности генерации от спектрального состава излучения накачки при микросекундном когерентном возбуждении основных наиболее эффективных классов красителей (кумариновых, родаминовых, оксазиновых красителей, DCM, феналемина 160) в растворах и твердотельных матрицах;
- первая реализация при когерентной накачки излучением эксимерного XeClлазера генерации на 12-ти новых соединениях — производных 3-(2бензимидазолил) кумарина в спектральном диапазоне 490–573 нм, обладающих высокой генерационной эффективностью и высокой фотохимической устойчивостью;
- получение впервые генерации в спектральной области 730–740 нм на красителях кумаринового класса — производных бензопирилия и определение для этих соединений механизма влияния на генерационную

способность растворителей и заместителей в 7-м положении кумаринового кольца;

- выявление спектрально-генерационных свойств новых производных кумарина, позволивших создать новые эффективные активные среды для лазеров на красителях на их основе в растворах и твердотельных матрицах и определить оптимальные условия их генерации в красной области спектра (600-700) нм.);
- определение роли отдельных функциональных групп в формировании их спектральных и генерационных свойств кумариновых красителей;
- получение в условиях когерентной микросекундной накачки генерации у пяти красителей (пирометены, феналемины, перилен), внедренных в нанопористое стекло и определение энергетических и генерационных характеристик таких систем.

Официальный оппонент
Директор Научно-производственного
унитарного предприятия «Научнотехнический центр «ЛЭМТ» БелОМО»,
академик НАН Беларуси,
доктор физико-математических наук,
профессор, Лауреат Госпремии Беларуси

А.П.Шкадаревич

Condacen un médiniques comzoche le origination never meretre